Annexin XII Hexamer Retinal in Bacteriorhodopsin


Hartmut "Hudel" Luecke


One focus of my laboratory are structure-function investigations of integral membrane proteins.  To date the atomic structures of just over 1,100 membrane proteins are known (vs. over 90,000 soluble protein structures).  This imbalance is in stark contrast to the fact the most genomes contain 20-30% membrane proteins.  Recently, we have solved the atomic resolution structure of the light-driven ion pump bacteriorhodopsin (BR) in the resting state at very high (1.4 Å) resolution.  Together with the structures of several photocycle intermediates "frozen in mid-stroke" we have been able to develop a detailed atomic mechanism of light-driven ion pumping.  In addition, the structures of a related membrane protein that serves as the primary receptor in archaeal phototaxis (sensory rhodopsin II), that of a photoreceptor from Anabaena, the first eubacterial rhodopsin structure, and that of xanthorhodopsin, a light-driven ion pump with a dual chromophore (primary & antenna), have been determined.

We have determined the structure of the proton-gated urea channel from the human pathogen H. pylori (Nature 2013).  Six channels forms a hexameric ring and the channel pore has a novel architecture.  This channel is essential for H. pylori survival in the low-pH medium of the stomach and is thus an attractive cancer target.  We have identified compounds that inhibit the channel at submicromolar concentrations.  Thus the second general area of interest is structure-based drug discovery with an emphasis on cancer targets. We are currently focusing on this and other targets:

We are studying annexins, a family of proteins which interact with phospholipid bilayers in a Ca2+-dependent manner.  Annexins have been reported to mediate membrane aggregation and fusion events; they also modulate actin polymerization.  Detailed structural studies of annexins are essential for understanding their properties and interaction with other proteins, such as S100 proteins, at the atomic level.  We have alsodetermined the structures of several of a large subclass of annexins called alpha-giardins from the human pathogen, Giardia lamblia.

We have recently solved the structure of a key enzyme in purine metabolism, inosine-5'-monophosphate dehydrogenase (IMPDH).  IMPDH catalyzes the NAD-dependent conversion of IMP to XMP which in turn is converted to GMP, an essential building block of DNA.  The IMPDH-reaction is the rate-limiting step in GMP synthesis and is thus a promising target for anti-parasitic and anti-bacterial drugs. 

3'-Uridylyltion of RNA is emerging as a phylogenetically widespread phenomenon involved in processing events as diverse as uridine insertion/deletion RNA editing in mitochondria of trypanosomes and small nuclear RNA maturation in humans. This reaction is catalyzed by terminal uridylyltransferases (TUTases), which are template-independent RNA nucleotidyltransferases that specifically recognize UTP and belong to a large enzyme superfamily typified by DNA polymerase beta. Multiple TUTases, recently identified in trypanosomes, as well as a U6 snRNA-specific TUTase enzyme in humans, are highly divergent at the protein sequence level. However, they all possess conserved catalytic and UTP recognition domains, often accompanied by various auxiliary modules present at the termini or between conserved domains. We have determined the x-ray structure of a novel trypanosomal TUTase, TbTUT4, which represents a minimal catalytically active RNA uridylyltransferase.

A further interest of my group are ultra high resolution (1.0 Å or better) structures of phosphate binding protein and certain annexins.  These studies require synchrotron-generated X-rays of very high brilliance.  Atomic structures at this resolution are able to reveal details of hydrogen bonding and anisotropic motion that cannot be obtained by other methods.


Techniques used in our research
Selected publications (pre-2010):
External links about our research:
Other links: